INVAP in Space

Company background

OPERATION

INVAP operates as a private listed company

It has no public budget allocation and no tax exemptions

All dividends are reinvested

CREATION

September 1st, 1976

OWNERSHIP

Province of Río Negro, Argentina

AREAS OF ACTIVITIES

Nuclear – Aerospace – Government & Defense – Industrial Technology & Alternative Energies – Information & Communication Technology

ANNUAL REVENUES

200 million USD

WORKFORCE

1400 employees, 80 % of them are scientists, engineers and technicians

BRANCHES

Australia, Brazil, Egypt, USA, Venezuela and Saudi Arabia

Our Value Proposition

INVAP supplies high technology strategic products to corporations and government agencies worldwide.

Products are developed by **interdisciplinary teams balancing technical challenges**, **budget and schedule constraints**.

- INVAP works in close association with our customers to ensure a valuable Know-How and Technology Transfer process
- INVAP works in multi-national, multi-cultural environment
- INVAP's core activities are developed in-house: Design, prototyping, manufacturing, integration, functional & environmental testing
- INVAP has full control of technologies and processes to ensure a long-term commitment to customers' programs

Business Units

Nuclear Division

Design, construction and commissioning: Nuclear research reactors, radioisotope production plants, fuel manufacturing plants, waste management systems, spent fuel storage facilities.

Digital Terrestrial TV Area

Design, implementation and deployment of terrestrial digital TV systems.

Industrial & Alternative Energies Division

- Wind turbines
- Robots and special machines
- Food freeze-drying systems
- Chemical processes
- Hydro-kinetic, hydraulic turbines
- Equipment for the Oil & Gas industry

Medical Systems Area

Design and construction of:

- Medical equipment
- Radio-therapy equipment
- Turnkey Radio- therapy centers

Aerospace and Government Division

AEROSPACE:

Design and construction of space systems from concept definition to in-orbit operations:

- LEO and GEO satellites
- Spacecraft Bus
- Electro-optical, microwave & communication payload
- Ground Segment & Mission Control Center
- Products & Applications

GOVERNMENT & DEFENSE:

Design and construction of radar systems for:

- Air traffic control
- Defense
- Meteorological applications

End-to-End Product Development

INVAP implements full satellite projects offering end-to-end development, built-to-order products and custom turnkey solutions.

From Mission concept definition & design to manufacturing, assembly, integration and test capabilities in all systems and subsystems:

Electronics, Software, Attitude & Orbit Control, Propulsion, Structures, Thermal Control, Harness, and Electro-Optical, Communications, Microwave Payload.

Other In-house capabilities: Full spacecraft analytical modeling; satellite virtual simulators; alignment, metrology and calibration; flight operations engineering; L&EOP and Commissioning.

World class facility for Satellite AIT

- Capacity for integration of up to 4 large satellites simultaneously
- 500 m² class 100.000
- Low Bay clean room for equipment level functional testing
- Bonded store for flight hardware storage
- 4 support rooms (300 m²) with feedthrough connected to the Hi-bay

Optical Facilities

In-house facilities (200m²) class 1.000 and class 10.000 for electro-optical payload AIT since 1992

CEATSA Environmental Testing Facilities

Environmental tests **at box, assembly and system levels** are performed in-house. The testing facility is strategically located next door to the high-bay clean room, easily allowing satellites and other space products to move from AIT High Bay to Environmental Testing.

- The testing facility includes:
- Thermal-Vacuum Chamber
- Vibration test system
- Direct Field Acoustic Test System
- Mass Properties Measurement equipment
- Near Field Antenna Pattern Measurement system
- Electromagnetic Compatibility Test System

Earth Observation Satellites: SAC Program

Cooperation agreement between CONAE and NASA since 1991. 4 LEO satellites (SAC-A, SAC-B, SAC-C, SAC-D),

carrying Payload Instruments for Scientific and Earth Observation Applications.

INVAP participation in the Program:

- Mission design
- Project Management
- Systems Engineering
- Platform Design & Manufacturing
- Payload Design & Manufacturing
- Satellite Integration & Test
- Launch Base Operations
- Launch & Early Orbits Operations
- Platform & Payload Commissioning

SAC-D (2011)

NASA's decision to use a platform

NASA's decision to use a platform
designed, manufactured and
integrated entirely by INVAP, for
the Aquarius instrument, is a clear
sign of trust in INVAP's capabilitiesObjectiveProvide monthly global maps of
the sea water surface salinity, to
understand the ocean processes
and climate change.

Mass 1350Kg

Main instrument: Aquarius. Other instruments including: Atmospheric Sounder (Italy), Debris and Radiation mapper (France), High Sensitivity camera, NIR camera and MW Radiometer (Argentina)

Payload

SAC-C (2000)

Highlight	SAC-C spacecraft became part of a "morning constellation", composed by Terra, Landsat-7, SAC-C and the EO-1.
Objective	Study the structure and dynamics of the atmosphere and ionosphere, and earth's magnetic field
Mass	485Kg
Payload	3 Electro-Optical cameras (Argentina) and 4 instruments from: USA Denmark Italy France

SAC-B (1996)

	۲

Highlight	Gave birth to a new branch of technological development and engineering capabilities in the Argentina
Objective	Study solar physics and astrophysics through the examination of solar flares, gamma ray bursts and diffuse cosmic X-ray
Mass	191Kg
Payload	4 Scientific Instruments: 2 USA, 1 Italy and 1 Argentina

Highlight	Designed, manufactured, integrated and tested in 10 months
Objective	Technology Demonstration
Mass	68Kg
Payload	Electro-Optical camera

Geostationary Telecommunication Satellites: INIAP ARSAT Program

INVAP is the **Prime Contractor** for the Telecommunication Satellites Program for ARSAT, the National Telecommunication Operator.

ARSAT-1, ARSAT-2 and ARSAT-3 satellites comprise the Argentine Geostationary

Telecommunications Satellite System.

INVAP's Participation:

- Design, Manufacturing & Integration
- Functional and Environmental Testing
- Flight Operators Training
- Flight Operations Support

ARSAT-1 and ARSAT-2 were successfully launched by Ariane V launcher in 2014 and 2015. Fully operational at 72°W and 81°W orbital slots.

Small GEO High Throughput System (HTS) Communications Satellite:

- Services in Ku, Ka and C bands
- Wet Mass < 1 Ton
- Payload Power up to 3 Kw
- Payload Mass up to 300 Kg
- Up to 30 Gbps Throughput Multi-Spo
- Full Electric Propulsion (OR+SK)
- Orbit Raising duration < 6 months
- > 15 years lifetime
- Launcher: Compatible with Falcon-9, Proton Light / Medium, Ariane 5 / 6 and other commercially available vehicles

Satellite Main Features/Highlights:

- Service Platform using a centralized, modular and scalable avionics design, developed and manufactured fully in-house
- Communication Payload units and Attitude Control Sensors & Actuators supplied by recognized companies in the space business
- End to end cycle development: from design to manufacturing, payload and platform AIT, system level AIT and environmental test campaign, all performed in-house
- Satellite design compatible with a dual-stacked or side-by-side launch configurations for optimum envelope exploitation

- +25 years of expertise delivering custom designed satellites for the Argentinean Space Agency CONAE, the National Telecom Operator ARSAT, and flight components to other international customers
- Flight Heritage as Prime Contractor for LEO (Low Earth Observation) and GEO (Geostationary) missions
- Compliant with the most rigorous standards, including NASA and ESA space agencies
- In-house capabilities to cover the full cycle development from mission concept design to manufacturing, integration, testing and in-orbit operation
- Focus on customer needs including Technology Transfer & Training

Thank you for your attention Any questions?

invap
invapargentina
invap.com.ar
contact: spacemarketing@invap.com.ar